Breast-specific gamma imaging with Tc-99m-sestamibi in the diagnosis of breast cancer and its semiquantitative index correlation with tumor biologic markers, subtypes, and clinicopathologic characteristics

Hui Tan, Hongwei Zhang, Weige Yang, Yipeng Fu, Yusen Gu, Min Du, Dengfeng Cheng, and Hongcheng Shi

Objectives To determine the sensitivity of breast-specific gamma imaging (BSGI) in diagnosing breast cancer and assess the potential correlation between the semiquantitative index of BSGI and biologic markers, molecular subtypes, and clinicopathologic characteristics of breast cancer.

Materials and methods The sensitivity of BSGI for breast cancer was retrospectively assessed in 102 female breast cancer patients who underwent BSGI before surgery and was compared with that of ultrasonography and mammography. BSGI was visually graded on the basis of the Society of Nuclear Medicine and Molecular Imaging guideline. Tracer uptake in the cancer as the lesion to nonlesion ratio (L/N) was calculated semiquantitatively and was subsequently correlated to tumor biologic markers, molecular subtypes, and clinicopathologic characteristics.

Results The sensitivity of BSGI for breast cancer by visual analysis was 94.1% (96/102) in our cohort, which was 100% (47/47) in the subgroup of patients with a tumor size more than 2.0 cm and 89.1% (49/55) in the subgroup of patients with a size less than or equal to 2.0 cm. The sensitivity of BSGI was significantly higher than that of ultrasonography of 84.2% (85/101) (P = 0.022) and mammography of 84.5% (60/71) (P = 0.037). There was no significant correlation between the L/N and expressions of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and antigen Ki-67, and the subtypes or histologic grade of the cancer (P > 0.05). However, the value of L/N was associated with infiltration degree (P = 0.005), axillary lymph node status (P = 0.029), and tumor size (P = 0.002). Multivariate analysis further indicated that the value of L/N was correlated with infiltration degree (P = 0.016) and tumor size (P = 0.002).

Conclusion BSGI has a high sensitivity for detecting primary breast cancer. The value of L/N on BSGI was independently related to infiltration degree and tumor size of breast cancer, but not to expression of tumor receptor markers and histologic grade.

Keywords: biologic markers, breast cancer, breast-specific gamma imaging, clinicopathologic factors, sensitivity, Tc-99m-sestamibi

Introduction Breast cancer is the most common malignancy in women. Mammography (MMG) and ultrasonography (US) are frequently used anatomic imaging tools to screen and diagnose breast cancer. However, there are limitations for both the MMG and the US in detection of breast cancer. The sensitivity of 78–85% for MMG in diagnosing breast cancer decreases to 30–48% in patients with dense breast tissues [1,2]. US is operator dependent, and has a high false-positive rate with a low specificity [3,4]. Nuclear medicine techniques such as technetium-99m sestamibi (Tc-99m-MIBI) scintimammography provide a unique complementary diagnosis tool for functional imaging. Compared with Tc-99m-MIBI scintimammography, breast-specific gamma imaging (BSGI) has a higher resolution, with a smaller field of view. It has been used widely in recent years for diagnosing breast cancer, especially in the context of dense breasts, scars, and implants [5–7].

Breast cancer pathophysiology is complex because of its marked heterogeneity, with distinct molecular characteristics and subtypes, with different managements accordingly. Several factors including tumor size, histologic grade, axillary lymph node status, biologic markers [including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her-2) status, and antigen Ki-67 (Ki-67)], and molecular subtypes have been shown to be able to predict the biologic behavior as well as the prognosis of breast cancer [8–11].
Studies have shown that uptake of Tc-99m-MIBI in scintimammography was associated with breast cancer tumor size, histologic grade, axillary lymph nodes status, and biologic marker positivity [12,13]. However, little is known about the correlation of Tc-99m-MIBI uptake in BSGI with these features [14] as well as its relation to the varying molecular subtypes of breast cancer.

Therefore, in this study, we evaluated the sensitivity of BSGI in diagnosing breast cancer and compared it with that of US and MMG. In addition, we aimed to determine any independent correlation between the semi-quantitative index of lesion to nonlesion ratio (L/N) on BSGI and the expression of biologic markers (ER, PR, Her-2, and Ki-67), molecular subtypes, as well as clinical-pathologic characteristics of breast cancer.

Materials and methods

Patients

From March 2012 to October 2013, 178 patients with a breast mass underwent a BSGI examination in our institution. In this study, only a subgroup of patients who had BSGI scans initially with a subsequent pathological diagnosis of primary breast carcinoma were enrolled. Those patients who had been diagnosed with breast cancer by biopsy or fine needle aspiration of breast tissue and axillary lymph nodes, or followed by treatment before BSGI were excluded.

Finally, 102 female patients who had BSGI initially with a subsequent histologic diagnosis of breast cancer were retrospectively analyzed. The mean age of the patients was 57.77 ± 11.73 years (range 31–87 years). This study was approved by the Institutional Review Board of Zhongshan Hospital, Fudan University. Among the 102 patients, 101 patients had US and 71 had digital MMG within 15 days.

Tc-99m-MIBI BSGI

BSGI scan was performed in 10–15 min following an intravenous administration of 740 MBq Tc-99m-MIBI (Shanghai GMS Pharmaceutical Co. Ltd, Shanghai, China) through an antecubital vein contralateral to the suspicious breast side to avoid potential false-positive uptake in the axillary lymph nodes. The patients remained seated during the procedure. Cranio-caudal (CC) and mediolateral oblique (MLO) images were obtained in both breasts using a high-resolution BSGI scanner (Hitachi, Tokyo, Japan) with a 7.5–12 MHz probe. CC and MLO images were obtained of the breasts bilaterally by MMG using a senographe DS (GE Medical Systems, Fairfield, Connecticut, USA). The US and MMG results were interpreted by two experienced ultrasound physicians and radiologists, respectively, who were unaware of the pathology and other examination results. In case of discrepancy, a consensus was reached after mutual discussion. For US and MMG, BI-RADS categories 0–3 were classified as negative and BI-RADS categories 4 and 5 were classified as positive.

Analysis of BSGI images

BSGI images were analyzed by two experienced nuclear medicine physicians who were blinded to the patients’ clinical information and pathology results. In cases of discrepancy, a consensus was reached after mutual discussion. According to the 2010 guideline of the Society of Nuclear Medicine and Molecular Imaging [15], visual analysis grades of BSGI were as follows (Fig. 1): grade 1 (homogeneous uptake), grade 2 (small patchy uptake), grade 3 (patchy uptake with mild to moderate intensity), grade 4 (mild focal uptake), and grade 5 (definite focal uptake). A result of grades 4 to 5 was considered to be positive, and grades of 1 to 3 were considered to be negative [6,16].

After visual assessment of BSGI images, a semi-quantitative analysis of the L/N was carried out (Fig. 1) [6]. First, a region of interest (ROI) was manually drawn on the lesion area in CC and the same ROI was placed on a nonlesion area, which was approximately equal to the distance between the nonlesion and the lesion area to the nipple. Second, the radioactivity count of the lesion area was divided by the corresponding count of the nonlesion area as the L/N value of CC. The same method was used for the L/N value on an MLO view. The higher L/N value of CC and MLO was selected as the semi-quantitative index for analysis.

Immunohistochemical staining

Infiltration degree, histologic grade, tumor size, and axillary lymph node status were determined from the surgically excised specimens. The expressions of ER, PR, Her-2, and Ki-67 were evaluated in the surgically excised specimens using standard avidin–biotin complex immunohistochemical staining techniques. ER and PR positivity were defined as the presence of 1% or more positively stained nuclei in 10 high-power fields [17]. The intensity of Her-2 staining was classified as 0 (no staining), 1+ (weak and incomplete membrane staining), 2+ (strong, complete membrane staining in ≥30% of tumor cells) or weak/moderate heterogeneous complete staining in ≥10% of tumor cells), and 3+ (strong, complete membrane staining in >30% of tumor cells). Tumors with a score of 3+ were classified as Her-2 positive those with a score of 0 or 1+ were classified as
Her-2 negative. Gene amplification using fluorescence in-situ hybridization (FISH) was used to determine Her-2 status in tumors with a score of 2+.

Molecular classification

On the basis of the results of immunohistochemical analysis and FISH, the tumors were categorized into four molecular subtypes: luminal A (ER positive and/or PR positive, Her-2 negative, and Ki-67 < 14%), luminal B (ER positive and/or PR positive, Her-2 negative, and Ki-67 ≥ 14%; or ER positive and/or PR positive, Her-2 positive, irrespective of Ki-67 expression), Her-2 positive (ER negative, PR negative, and Her-2 positive), and triple negative or basal (ER negative, PR negative, and Her-2 negative).

Statistical analysis

SPSS, 19.0 software for Windows (SPSS Inc., Chicago, Illinois, USA) was used for statistical analysis, with P-values of less than 0.05 indicating a statistically significant difference. Differences in semiquantitative variants were analyzed using Pearson’s χ²-test. The correlations between the L/N and biologic markers, molecular subtypes, and clinicopathologic characteristics of breast cancer were analyzed and compared using Student’s t-test and multivariate analysis with linear regression.

Results

Pathology

The pathology of breast cancer is shown in Table 1, Figs 2 and 3. Other rare types included malignant phyllodes tumor, Paget’s disease, secretory carcinoma, squamous cell carcinoma, respectively (n = 1), and neuroendocrine carcinoma (n = 2).

Table 1 Infiltration degree of breast cancer

<table>
<thead>
<tr>
<th>Type</th>
<th>Cases (N=102) [n (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltrating ductal carcinoma</td>
<td>78 (76.47)</td>
</tr>
<tr>
<td>DCIS</td>
<td>13 (12.75)</td>
</tr>
<tr>
<td>Infiltrating lobular carcinoma</td>
<td>2 (1.96)</td>
</tr>
<tr>
<td>Micropapillary carcinoma</td>
<td>2 (1.96)</td>
</tr>
<tr>
<td>Others</td>
<td>7 (6.86)</td>
</tr>
</tbody>
</table>

DCIS, ductal carcinoma in situ.

Analysis of BSGI, US, and MMG

Of the 102 breast cancer cases, the sensitivity of BSGI with visual analysis in diagnosing breast cancer was 94.1% (96/102). When the group was stratified by tumor size, the sensitivity was 100% (47/47) for tumor size more than 2.0 cm and 89.1% (49/55) for size less than or equal to 2.0 cm. The corresponding sensitivity of US in diagnosing breast cancer was 84.2% (85/101). Fourteen of 16 misdiagnosed cases by US were identified accurately by BSGI. The sensitivity of MMG in diagnosing breast cancer was 84.5% (60/71). In addition, six cases with dense breast tissue out of the 11 missed breast carcinoma patients by MMG were identified successfully by BSGI. There was a statistically significant difference between BSGI and US (P = 0.022) and between BSGI and MMG (P = 0.037) for diagnosing breast cancer.

Correlations between the value of L/N and biologic markers

As shown in Table 2, the semiquantitative index of L/N showed no statistically significant correlation with ER, PR, Her-2, and Ki-67 of breast cancers. In addition, the difference was not statistically significant among the Her-2 staining intensity scored 0 and 1+, and 2+ (r = 1.580, P = 0.120), that scored 0 and 1+, and 3+ (r = 0.700, P = 0.022) and between Her-2 and Ki-67 expression.
P = 0.490), and that scored 2+ and 3+ (t = 0.910, P = 0.370), respectively.

Correlations between the value of L/N and molecular subtypes
Among the 102 cases, 35 out of 40 cases with Her-2 staining graded as 2+ were assessed in terms of Her-2 gene amplification by FISH, of which five cases were Her-2 positive and 30 cases were Her-2 negative. Using a combination of immunohistochemical profiles and FISH testing, there were 24 luminal A cases, 39 luminal B cases, 18 Her-2 positive cases, and 16 triple-negative breast cancers. There was no significant difference in L/N between luminal A and B (t = 0.002, P = 1.000), between luminal A and Her-2 positive (t = 0.120, P = 0.910), between luminal A and triple negative (t = 0.320, P = 0.750), luminal B and Her-2 positive (t = 0.150, P = 0.890), between luminal B and triple negative (t = 0.410, P = 0.680), or between Her-2 positive and triple negative (t = 0.610, P = 0.550), respectively, as shown in Table 2.
Correlations between the value of L/N and clinicopathologic characteristics

The potential association between the value of L/N and breast cancer histologic grade I could not be assessed as only two breast cancer cases with grade I were present in our cohort. The value of L/N was statistically related to certain clinicopathologic characteristics including the degree of infiltration, axillary lymph node status, and tumor size (Table 2). Multivariate analysis indicated that the value of L/N was correlated positively with infiltration degree ($P = 0.016$) and tumor size ($P = 0.002$), shown in Table 3. The value of L/N between histologic grades II and III failed to reach statistical significance.

Discussion

BSGI was a useful functional technique, with a high sensitivity of 83–100% for detecting breast cancer as reported in recent studies [7,18–20]. In our study, the sensitivity of 94.1% for BSGI diagnosing breast cancer by visual analysis was similar to the reported results.
We further showed that the sensitivity of BSGI in diagnosing breast cancer was related to tumor size: 100% for cancers size more than 2.0 cm and 89.1% for less than or equal to 2.0 cm. The sensitivity of BSGI for breast cancer was higher than that of US (84.2%) and MMG (84.5%). Moreover, missed cases by US or MMG, including six breast cancer cases with dense breast tissue, were accurately diagnosed by BSGI. Therefore, our study showed that BSGI improved the sensitivity of breast cancer diagnosis, and was a useful complementary technique to US and MMG.

BSGI images, according to the 2010 guideline of Society of Nuclear Medicine and Molecular Imaging, can be analyzed and interpreted visually; however, visual analysis alone is rather subjective and remains reader dependent, particularly in terms of differentiating between likely benign and malignant lesions. Therefore, we have attempted to use an additional method, namely, the semiquantitative analysis of L/N, to aid the interpretation of BSGI images [6] and to objectively analyze related factors of Tc-99m-MIBI uptake.

Several studies have investigated the correlation between Tc-99m-MIBI uptake on scintimammography and ER, PR, Her-2, and Ki-67 status [12,13,21]. Cwikla et al. [12] reported that patients with PR-negative or ER-negative cancers had higher Tc-99m-MIBI uptake on scintimammography. Bonazzi et al. [13] reported that the value of L/N on scintimammography was correlated with the expression of Ki-67. However, other studies have shown no statistical relationship between the presence of biologic markers (ER, PR, Her-2, and Ki-67) and the value of L/N on scintimammography [21]. Although BSGI and scintimammography are both based on the same mechanisms of Tc-99m-MIBI accumulation in tumors, the equipment, the imaging time after injection of radiopharmaceuticals, the dose of Tc-99m-MIBI, and the method for determining the ROI for the semiquantitative index are different. Therefore, a dedicated investigation to assess the relationship between key BSGI and biologic markers was needed. In the present study, we found no significant correlation between the value of L/N on BSGI and ER, PR, Her-2, and Ki-67 as biologic markers. Thus, our findings support the contention that Tc-99m-MIBI accumulation in tumor cells on BSGI cannot reflect biologic profiles of breast cancer.

On the basis of the expression of those markers and the result of FISH analysis, breast cancer has been divided into four subtypes, namely, luminal A, luminal B, Her-2 positive, and triple negative, by the expert panel at the 12th International Breast Cancer Conference, St Gallen, 2011 [22]. Subtyping has been considered the essential foundation for the clinical management of breast cancer [23,24]. It is not known whether there is an association between the uptake of Tc-99m-MIBI on BSGI and subtypes of breast cancer. Some studies have suggested that the uptake fluorine-18 fluorodeoxyglucose (18F-FDG) on PET imaging is correlated with different subtypes [25–27]. Here, we found no statistical difference between Tc-99m-MIBI uptake on BSGI in the different subtypes of breast cancer. This may be explained by the different mechanisms of Tc-99m-MIBI and 18F-FDG accumulations in tumor. Increased uptake of Tc-99m-MIBI in cancer cells, compared with that in normal breast tissue, is proportional to the neovascularization/blood volume and increased mitochondrial density in cancer cells, whereas increased 18F-FDG uptake is

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unstandardized β-coefficients</th>
<th>SE</th>
<th>Standardized β-coefficients</th>
<th>t-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary lymph node status</td>
<td>0.287</td>
<td>0.254</td>
<td>0.110</td>
<td>1.132</td>
<td>0.260</td>
</tr>
<tr>
<td>Infiltration degree</td>
<td>0.763</td>
<td>0.312</td>
<td>0.237</td>
<td>2.445</td>
<td>0.016</td>
</tr>
<tr>
<td>Tumor size</td>
<td>0.726</td>
<td>0.227</td>
<td>0.294</td>
<td>3.504</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 2: Patient characteristics and the value of L/N

Table 3: Results of multiple analysis

ER, estrogen receptor; Her-2, human epidermal growth factor receptor 2; L/N, lesion to nonlesion ratio; PR, progesterone receptor.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
mainly related to increased glucose metabolism associated with malignancy.

It is well established that the clinicopathologic characteristics of a tumor (such as infiltration degree, histologic grade, axillary lymph node status, and tumor size) relate to breast cancer behavior. Some studies [12,28] have shown that Tc-99m-MIBI uptake on scintimammography was closely correlated with certain tumor clinicopathologic characteristics. In contrast, Papantoniou et al. [29] reported that uptake of Tc-99m-MIBI on scintimammography was not statistically different between grades II and III cancers. In this study, we found no correlation between the mean value of L/N and the histologic grades (II and III) on the BSGI. The uptake of Tc-99m-MIBI on BSGI was positively related to the degree of infiltration, tumor size, and axillary lymph node status (reflecting the higher number of metabolically active breast cancer cells). Multivariate analysis indicated that the semiquantitative index of L/N was only associated with the degree of infiltration and tumor size, not with axillary lymph node status. This may have been because axillary lymph node status has a much stronger correlation with tumor size.

There were several limitations to our study. First, our study was restricted to a single center. Second, only positive breast cancer patients were enrolled; thus, the specificity of the BSGI for breast cancer cannot be assessed. Third, the correlation of Tc-99m-MIBI uptake with outcome or survival was not assessed because of the relatively short follow-up duration in the study.

Conclusion

We found that the sensitivity of BSGI in diagnosing breast cancer by visual analysis was 94.1%, higher than that of US and MMG. Our data showed that Tc-99m-MIBI uptake in breast cancer on BSGI is associated with infiltration degree and tumor size, but not with the expression of tumor markers, histologic types, and grades.

Acknowledgements

Conflicts of interest

There are no conflicts of interest.

References

